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It is shown that the restrictions on the form of property tensors of rank <5 that

follow from the Neumann principle for the point groups describing quasicrystals

can easily be deduced from the restrictions for the point groups describing

ordinary crystals. For octagonal and dodecagonal point groups, this is true even

for property tensors of rank <8 and <12, respectively. The results derived in a

number of papers for various physical properties of quasicrystals with certain

point-group symmetries are generalized to all quasicrystal point groups, and it is

shown that the results become more lucid if the classification of quasicrystal

point groups with a principal axis into pentagonal, decagonal, octagonal and

dodecagonal ones is done appropriately. A comparison with other approaches

shows that applying the Neumann principle for the point groups describing

quasicrystals yields the form of the so-called phonon part of the tensor under

consideration. Connections between the restrictions valid for property tensors

of arbitrary rank are given for general Heesch–Shubnikov point groups in three

dimensions.

1. Introduction

The rotational symmetry of a right prism or antiprism with a

regular n-gon as basis is n2 if n is odd, n22 if n is even; taking

the inversion �11 as an additional generator, the centrosym-

metric groups �nnm (n odd) and n/mmm (n even) are obtained.

The pentagonal and decagonal point groups are (proper or

improper) subgroups of 10/mmm containing fivefold rotations;

those groups that are subgroups of �55m are called pentagonal,

the others decagonal. Similarly, the octagonal point groups are

those subgroups of 8/mmm containing fourfold rotations that

are not subgroups of 4/mmm; the dodecagonal point groups

are those subgroups of 12/mmm containing sixfold rotations

that are not subgroups of 6/mmm. The five pentagonal, seven

octagonal, seven decagonal and seven dodecagonal point

groups are listed in Table 1 below [see also Table 3-1 of

Steurer (2004) or Table 10.1.4.2 of Hahn & Klapper (2002)].

Since the discovery of quasicrystals, several papers have

been published giving the restrictions on the form of property

tensors that follow from the Neumann principle for quasi-

crystal point groups [see e.g. Jiang et al. (1995) or Rama

Mohana Rao & Hemagiri Rao (1992, 1993)]. Influenced by the

Schoenflies notation, these authors define pentagonal,

decagonal, octagonal and dodecagonal not as described above

(see Table 2 in Jiang et al., 1995). It will be shown that their

definition obscures certain features of the dependence of the

form of property tensors on the point group of the quasi-

crystal.

A theorem due to Hermann (1934) states that for all tensors

of rank n a symmetry rotation of order >n leads to the same

restrictions as a symmetry rotation of infinite order. Notice

that a rotation–inversion axis �nn contains a rotation axis n if n is

odd, but only n/2 if n is even. It follows that for tensors of rank

<5 the pentagonal, decagonal, dodecagonal and octagonal

point groups (except �88 and �882m) lead to the same restrictions

as the corresponding hexagonal groups (except �66 and �66m2)

and that properties of icosahedral crystals described by

tensors of rank <5 are isotropic.

2. Point-group symmetries of quasicrystals; general
results on the form of property tensors

Let me start by considering the classical (i.e. monochrome)

point groups. Table 1 lists the trigonal, pentagonal, hexagonal,

octagonal, decagonal, dodecagonal and icosahedral point

groups and their classification into Laue classes: all groups G

for which the smallest centrosymmetric group containing G is

the same belong to one Laue class. In Table 1, the centro-

symmetric group of each Laue class appears in the bottom

line, whereas the pure rotation group appears in the top line.

The Laue classes of the pentagonal, octagonal, decagonal and



dodecagonal systems will be referred to as Ln1 and Ln2, where

n = 5, 8, 10 and 12, respectively, and where the subscript 1

refers to the Laue class containing one symmetry direction,

the subscript 2 to the class with several symmetry directions.

Polar tensors of even rank and axial tensors of odd rank are

invariant under space inversion �11; we say that they have

positive parity. For such property tensors, the restrictions

following from the Neumann principle depend only on the

Laue class of the point group. Therefore, it suffices to deter-

mine the restrictions for the pure rotation group in the Laue

class under consideration.

Polar tensors of odd rank and axial tensors of even rank

change sign under space inversion �11; we say that they have

negative parity. Such property tensors vanish for the

centrosymmetric groups, whereas the restrictions following

from the Neumann principle for the pure rotation groups do

not depend on the behaviour of the tensor under �11. It has

been shown by Grimmer (1991) that the restrictions for the

remaining crystallographic point groups can easily be

deduced from those for the pure rotation groups. Let me

show how this result can be extended to the icosahedral,

pentagonal, decagonal, dodecagonal and octagonal groups.

The right-handed Cartesian coordinate system used for

describing the form of tensors has its axes along twofold

symmetry axes in the case of icosahedral symmetry; for the

n-gonal symmetries, it has z along the principal symmetry

direction and x along a binary symmetry direction if such

symmetry directions exist. For n-gonal symmetries, we define a

right-handed quasicrystal coordinate system a, b, c with c

along the principal symmetry direction, a and b normal to c,

and along binary symmetry directions if such symmetry

directions exist. The first entry in the Hermann–Mauguin

symbol corresponds to c, the second to a, the angle between a

and b will be chosen below for the various cases such that the

third entry in the Hermann-Mauguin symbol corresponds to

a � b.

For the pentagonal and decagonal groups, we choose

a and b at an angle of 144�. It follows that a � b makes an

angle of 18� with a. The restrictions on the form of a property

tensor with negative parity imposed by 5m are such that each

tensor satisfying the restrictions for 5 can be decomposed

uniquely into a tensor satisfying the restrictions for 52

and a tensor satisfying the restrictions for 5m. Symbolically,

we may write: T[5] = T[52] � T[5m]. Analogously: T[10] =

T[1022] � T[10mm], T[5] = T[10] � T[10], T[52] =

T[1022] � T[102m]. Finally, T[10m2] may be obtained in two

different ways, providing a check of the calculation: T[5m] =

T[10mm] � T[10m2] and T[10] = T[102m] � T[10m2]. All

these equations follow from the facts that the two oriented

point groups on the right-hand side (a) have the point group

on the left-hand side in common and (b) together generate a

centrosymmetric point group (for which T vanishes).

Consider as an example the tensor that describes the

piezoelectric effect. It has rank 3 and is symmetric in its last

two indices. Following Nye (1985), it can be characterized by a

3 � 6 matrix dij. We shall see below that for 5 it has the same

form as for 6, for 52 the same as for 622. According to Nye

(1985), we then have

dij½5� ¼

0 0 0 d14 d15 0

0 0 0 d15 �d14 0

d31 d31 d33 0 0 0

0
B@

1
CA;

dij½52� ¼

0 0 0 d14 0 0

0 0 0 0 �d14 0

0 0 0 0 0 0

0
B@

1
CA:

It follows from T[5] = T[52] � T[5m] that

dij½5m� ¼

0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

0
@

1
A:

For the dodecagonal groups, we choose a and b at an angle

of 150�. It follows that a � b makes an angle of 15� with a.

T[12] = T[1222] � T[12mm], T[6] = T[12] � T[12], T[622] =

T[1222] � T[122m]. Finally, T[12m2] may be obtained in two

different ways, providing a check of the calculation: T[6mm] =

T[12mm] � T[12m2] and T[12] = T[122m] � T[12m2].

For the octagonal groups, we choose a and b at an angle

of 135�. It follows that a � b makes an angle of 22.5� with a.

T[8] = T[822] � T[8mm], T[4] = T[8] � T[�88], T[422] =

T[822] � T[�882m]. Also, T[�88m2] may be obtained in two

different ways: T[4mm] = T[8mm] � T[�88m2] and T[�88] =

T[�882m] � T[�88m2].

Notice that �882m and �88m2 differ only in their orientation:

they are rotated by 22.5� with respect to each other; the

Schoenflies symbol is D4d for both. According to T[�88] =

T[�882m] � T[�88m2], the two forms T[�882m] and T[�88m2] will
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Table 1
Distribution of trigonal, pentagonal, hexagonal, octagonal, decagonal, dodecagonal and icosahedral point groups into Laue classes.

Trigonal Pentagonal Hexagonal Octagonal Decagonal Dodecagonal Icosahedral

Laue class with
one symmetry
direction;
icosahedral class

3 C3 5 C5 6 C6 8 C8 10 C10 12 C12 235 I
�66 C3h

�88 S8 10 C5h 12 S12
�33 S6

�55 S10 6/m C6h 8/m C8h 10/m C10h 12/m C12h m�33�55 Ih

Laue class with
several
symmetry
directions

32 D3 52 D5 622 D6 822 D8 1022 D10 1222 D12

3m C3v 5m C5v 6mm C6v 8mm C8v 10mm C10v 12mm C12v
�66m2 D3h

�882m D4d 10m2 D5h 122m D6d

�33m D3d
�55m D5d 6/mmm D6h 8/mmm D8h 10/mmm D10h 12/mmm D12h



differ for tensors of negative parity unless they vanish.

Because T[�882m] and T[�88m2] have the same number of inde-

pendent components, the number of independent components

of T[�88] will be even. Similar results hold for 102m and 10m2,

which are rotated by 18� with respect to each other, the

Schoenflies symbol being D5h for both, and for 122m and

12m2, which are rotated by 15� with respect to each other, the

Schoenflies symbol being D6d for both. The possibility of

distinguishing the two orientations in which these groups

occur in the centrosymmetric group of their Laue class is an

essential advantage of the Hermann–Mauguin notation.

The relations given above hold for tensors of arbitrary rank.

For tensors of sufficiently low rank, the situation is even

simpler thanks to the following theorem by Hermann (1934): a

symmetry rotation of order n leads to the same restrictions as

a rotation of infinite order for all tensors of rank <n. Because

all pentagonal and decagonal point groups contain a rotation

axis of order 5, it follows for property tensors of rank <5 that

for the point groups 5 and 10 we have the same restrictions as

for 6, for 52 and 1022 the same as for 622, for 5m and 10mm

the same as for 6mm. Because T[5] and T[10] are the same, it

follows in the case of negative parity from T[5] =

T[10] � T[10] that T[10] vanishes, whence also T[102m] and

T[10m2] vanish because they contain T[10] as a subgroup.

Similarly, all dodecagonal point groups contain a rotation

axis of order 6 (in most cases even of order 12). It follows for

tensors of rank <6 that for 12 we have the same restrictions as

for 6, for 1222 the same as for 622, for 12mm the same as for

6mm. Because T[6] and T[12] are the same, it follows in the

case of negative parity that T[12] vanishes, whence also

T[122m] and T[12m2] vanish. (Notice that T[�66], T[�662m] and

T[�66m2] need not vanish for tensors of negative parity with

rank � 3 because �66 contains a rotation axis of order 3 but not

of order 6.)

All octagonal point groups contain a rotation axis of order 4

(in most cases even of order 8). It follows for tensors of rank

<6 that for 8 we have the same restrictions as for 6, for 822 the

same as for 622, for 8mm the same as for 6mm. For tensors of

rank <4, it follows that for 8 we have the same restrictions as

for 4, for 822 the same as for 422, for 8mm the same as for

4mm. Because for tensors of rank <4 T[4] and T[8] are the

same, it follows in the case of negative parity that T[�88]

vanishes, whence also T[�882m] and T[�88m2] vanish.

Finally, it follows from the Neumann principle that prop-

erties described by tensors of rank <5 must be isotropic in

crystals with icosahedral symmetry.

3. Comparison with results given in the literature on
properties of quasicrystals

Jiang et al. (1990) considered the two icosahedral, five

pentagonal and two (10 and 10m2) of the seven decagonal

point groups. In their Table 1, they consider the piezoelectric

tensor (of negative parity). Without making use of the results

of Nye (1985), they find for 5 the same form as Nye gives for 6,

for 52 the same as Nye for 622, for 5m the same as Nye for

6mm, and that the tensor vanishes in the six other cases. The

three non-vanishing forms immediately follow from our

general results above. Vanishing follows in the cases 10 and

10m2 from our general results above, in the cases �55, �55m and

m�33�55 because of centrosymmetry; in the cases 235 and m�33�55
because of isotropy. [Already the cubic symmetry 432 leads to

isotropy for tensors of rank <4. Nye (1985) states that the

piezoelectric tensor vanishes for 432, i.e. in the isotropic case.]

In their Table 2, Jiang et al. (1990) consider the photoelastic

and elastic tensors (of positive parity). Without making use of

the results of Nye (1985), they find for the Laue class

containing 5 and for 10 the same form as Nye gives for 6, for

the Laue class containing 52 and for 10m2 the same form as

Nye gives for 622, and for the icosahedral Laue class the same

form as Nye gives for the isotropic case. Also these results

immediately follow from our results above, which further

show that the forms valid for 10 and 10m2 are valid for all

point groups in the corresponding Laue classes. Notice that

the elastic tensor has the same form for 6 and for 622 and

therefore for n, n2 (n odd), n22 (n even) whenever n � 5. This

form is called ‘transversely isotropic’ (see e.g. Walpole, 1984).

Jiang et al. (1992) considered six of the seven dodecagonal

point groups (122m is missing). The forms of the piezoelectric,

elastic and photoelastic tensors are given in their Tables 2 and

3. Also, these results immediately follow from the results of

Nye (1985) combined with the general results in our x2. These

results also show that their result for the photoelastic tensor

with eight free parameters is valid for L121, their result with

six free parameters for L122, information that is missing in

Jiang et al. (1992).

The ordinary Hall effect in its narrow sense is described by

an axial tensor of third rank, antisymmetric in its first two

indices, invariant not only under space inversion but also

under time reversal (see Grimmer, 1993). An axial tensor of

third rank, antisymmetric in its first two indices is equivalent

to a polar second rank tensor without internal symmetry. Nye

(1985) gives its forms in his Table 14. Its non-vanishing coef-

ficients are R11 = R22, R33, R21 = �R12 for point group 3, R11 =

R22, R33 for 32, and R11 = R22 = R33 for the cubic group 23.

Because for second-rank tensors a rotation of order >2 has the

same effect as a rotation of infinite order and because we deal

with a tensor of positive parity, it follows that the form for 3 is

valid also for Ln1, the form for 32 also for Ln2 (n = 5, 8, 10 or

12). The cubic group 23 having more than one rotation of

order >2 gives rise to an isotropic tensor, valid also for the

icosahedral Laue class. Considering the ordinary Hall effect,

Jiang et al. (1995) determined for quasicrystals the form of an

axial tensor of third rank, antisymmetric in its first two indices.

The result, given in their Table 2, is equivalent to the one we

obtained above by combining results of Nye (1985) with our

general considerations.

The third-order elastic stiffnesses are described by a polar

tensor of rank 6, symmetric in the first pair, the second pair

and the third pair of indices and symmetric under all permu-

tations of the three pairs. Therefore, it is usually characterized

by coefficients c���, where �, � and � run from 1 to 6 and

satisfy � � � � � (see e.g. Landolt-Börnstein, 1979). The

restrictions on c��� that follow from the Neumann principle
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for the 11 crystallographic Laue classes were first determined

by Fumi (1951, 1952) (see also Fumi, 1987). The result is

reproduced in chapter 2.1.4 of Landolt-Börnstein (1979) as

Table 6 and ‘Definitions according to Brugger’ of Table 7.

Because a fourfold and a sixfold rotation along the same axis

generates a twelvefold rotation along that axis, the form of

c��� for L121 is found by determining c��� such that it satisfies

the restrictions for 4 and for 6. The result is that c��� satisfying

the restrictions for 6 satisfies those for 12 if c222 = c111 and c116 =

0, which reduces the number of independent constants from 12

to 10. Similarly, the form for L122 is found by determining c���
such that it satisfies the restrictions for 422 and 622. The result

is that c��� satisfying the restrictions for 622 satisfies those for

1222 if c222 = c111, which reduces the number of independent

constants from 10 to 9. This form with nine independent

constants is mentioned in chapter 2.1.4 of Landolt-Börnstein

(1979) as the one valid for transversely isotropic materials,

which misses the point that the forms for L121 and L122 are

not the same for the third-order elastic coefficients. Notice

that the form for L12i is valid for all Lni with n � 7 (i = 1, 2)

because we deal with a tensor of rank 6 with positive parity.

Using different methods, Rama Mohana Rao & Hemagiri Rao

(1993) considered the third-order elastic stiffnesses for the two

icosahedral, five pentagonal and two (10 and 10m2) of the

seven decagonal point groups. As expected, their result for 10

agrees with ours for Ln1 and their result for 10m2 with ours for

Ln2, n � 7. Notice that their results for the pentagonal point

groups differ from transverse isotropy and their result for the

icosahedral point groups differs from isotropy, and that they

cannot be obtained simply by applying our general results to

the forms given by Fumi (1951, 1952).

Rama Mohana Rao & Hemagiri Rao (1993) considered also

the second-order piezomagnetic effect, i.e. magnetization as a

quadratic function of the stresses. Magnetization being

described by an axial vector, the effect is described by an axial

tensor of rank 5. The authors consider the form of this tensor

only for the point groups mentioned above, which makes little

sense because the effect depends on magnetic order, i.e. on the

Heesch–Shubnikov point group of the crystal. It would make

more sense to consider the second-order piezoelectric effect,

which is more easily measured experimentally. Its form does

not depend on magnetic order; it is described by a polar tensor

of rank 5, i.e. a tensor of negative parity.

4. The form of tensors describing magnetic properties
of quasicrystals; comparison with literature results

We showed that for quasicrystals there are three non-

vanishing forms of the piezoelectric tensor. This tensor is

invariant under time reversal 10, figuratively under the
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Table 2
The various non-vanishing forms of the 3� 6 matrix describing piezoelectricity and piezomagnetism in quasicrystals and the corresponding point groups.

The groups within brackets differ only by their orientation. Column 3 gives the form of the vector describing the pyroelectric effect for the point groups in column 1
and the pyromagnetic effect for the point groups in column 4. Pyro- and piezoelectricity vanish for the pentagonal, octagonal, decagonal and dodecagonal groups
that do not appear in column 1, pyro- and piezomagnetism for those that do not appear in column 4; all four effects vanish for the icosahedral groups.

1 2 3 4

Point group in case of
piezoelectricity and pyroelectricity

Form of the 3 � 6 matrix describing
the piezo-effects Pyrovector

Point group in case of piezomagnetism
and pyromagnetism

5, 510

n, n0, n10,
where n = 8, 10 or 12

0 0 0 d14 d15 0

0 0 0 d15 �d14 0

d31 d31 d33 0 0 0

0
@

1
A

0

0

p

0
@

1
A

5, �55
n, �nn, n/m,
where n = 8, 10 or 12

52, 520, 5210

n22, n2020, [n0202, n0220], n2210,
where n = 8, 10 or 12

0 0 0 d14 0 0

0 0 0 0 �d14 0

0 0 0 0 0 0

0
@

1
A

0

0

0

0
@

1
A

52, 5m, �55m
n22, nmm, [ �nnm2, �nn2m], n/mmm,
where n = 8, 10 or 12

5m, 5m0, 5m10

nmm, nm0m0, [n0m0m, n0mm0], nmm10,
where n = 8, 10 or 12

0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

0
@

1
A

0

0

p

0
@

1
A

520, 5m0, �55m0

n2020, nm0m0, [ �nnm020, �nn20m0], n/mm0m0,
where n = 8, 10 or 12

Table 3
The point groups of quasicrystals with non-vanishing magnetoelectric
effect.

The groups within brackets differ only by their orientation. The effect vanishes
for the pentagonal, octagonal, decagonal, dodecagonal and icosahedral groups
that do not appear in the table.

Point group
Form of the matrix describing
the magnetoelectric effect

5, �550

n, �nn0, n/m0,
where n = 8, 10 or 12

�11 �12 0

��12 �11 0

0 0 �33

0
@

1
A

52, 5m0, �550m0

n22, nm0m0, [�nn0m02, �nn02m0], n/m0m0m0,
where n = 8, 10 or 12

�11 0 0

0 �11 0

0 0 �33

0
@

1
A

5m, 520, �550m
nmm, n2020, [�nn0m20, �nn020m], n/m0mm,
where n = 8, 10 or 12

0 �12 0

��12 0 0

0 0 0

0
@

1
A

235, m0 �330 �550 �11 0 0

0 �11 0

0 0 �11

0
@

1
A



exchange of black and white. The first group in each row of

column 1 in Table 2 is monochrome, the last is the corre-

sponding grey group, i.e. the direct product of the mono-

chrome group and the group 10 = {1, 10}. The remaining groups

of each row are the black–white subgroups of index 2 of the

grey group. Whereas the piezoelectric effect is invariant under

time reversal 10 and changes sign under space inversion �11, the

piezomagnetic effect is invariant under �11 and changes sign

under 10. It then follows from Neumann’s principle that a

symmetry operation �nn imposes the same restrictions on the

piezoelectric tensor as a symmetry operation n0 imposes on the

piezomagnetic tensor. Taking into account that the mirror

reflection m is the same as �22, we can write down also for

piezomagnetism the quasicrystal symmetries corresponding to

the various forms of the 3 � 6 matrix, as shown in column 4 of

Table 2. The last group in each row of column 4 is centro-

symmetric; the others are its non-centrosymmetric subgroups

of index 2.

The vector describing pyroelectricity shows the same

behaviour under �11 and 10 as the tensor describing piezo-

electricity; also pyromagnetism and piezomagnetism show the

same behaviour under �11 and 10. Nye (1985) showed that the

vector describing pyroelectricity has the form

T½3� ¼

0

0

p

0
@

1
A; T½32� ¼

0

0

0

0
@

1
A; whence T½3m� ¼

0

0

p

0
@

1
A:

Because of Hermann’s theorem, similar results are obtained if

the threefold rotation is replaced by an n-fold rotation || z with

n � 2. The result is given in Table 2.
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Table 4
Heesch-Shubnikov point group symmetries and the corresponding forms of property tensors behaving under inversions in the various possible ways.

1 2 3 4 5 6 7 8 9 10 11

Form for tensor type
Triclinic,
monoclinic

Monoclinic
|| c,

n-gonal,
n odd,
n � 3;
cylindrical,

n-gonal,
n/2 odd,

n-gonal,
n/2 even,

Group type +i +c –i –c || b orthorhombic n =1 n � 6 n � 4 Cubic Icosahedral Spherical

1 A A A A 1 112 n n n 23 235 21
2 s A A D D 11m �nn �nn
3 t A D A D 1120 n0 n0

4 u A D D A 11m0 �nn0 �nn0

5 S A A �11 112/m �nn n/m n/m m�33 m�33�55 m1
6 T A A 110 11210 n10 n10 n10 2310 23510 2110

7 U A A �110 112/m0 �nn0 n/m0 n/m0 m0 �330 m0 �330 �550 m010

8 S t u A D 1120/m0 n0/m0 n0/m
9 s T u A D 11m10 �nn10 �nn10

10 s t U A D 1120/m n0/m n0/m0

11 S T U A �1110 112/m10 �nn10 n/m10 n/m10 m�3310 m�33�5510 m110

12 B B B B 121 222 n2 n22 n22 432
13 s B B C C 1m1 mm2 nm nmm nmm �443m
14 t B C B C 1201 20202 n20 n2020 n2020 4320

15 u B C C B 1m01 m0m02 nm0 nm0m0 nm0m0 �443m0

16a s B B E E m2m �nn2m �nn2m
16b s B B F F 2mm �nnm2 �nnm2
17a t B E B E 20220 n0220 n0220

17b t B F B F 22020 n0202 n0202
18a u B E E B m02m0 �nn02m0 �nn02m0

18b u B F F B 2m0m0 �nn0m02 �nn0m02
19a s t u B C E F m020m �nn20m0 �nn20m0

19b s t u B C F E 20m0m �nnm020 �nnm020

20a s t u B F C E mm020 n0m0m n0m0m
20b s t u B E C F m0m20 n0mm0 n0mm0

21a s t u B E F C 20mm0 �nn0m20 �nn0m20

21b s t u B F E C m20m0 �nn020m �nn020m
22 S B B 12/m1 mmm �nnm n/mmm n/mmm m�33m
23 T B B 12110 22210 n210 n2210 n2210 43210

24 U B B 12/m01 m0m0m0 �nn0m0 n/m0m0m0 n/m0m0m0 m0 �330m0

25 S t u B C 120/m01 m0m0m �nnm0 n/mm0m0 n/mm0m0 m�33m0

26 s T u B C 1m110 mm210 nm10 nmm10 nmm10 �443m10

27 s t U B C 120/m1 mmm0 �nn0m n/m0mm n/m0mm m0 �330m
28a S t u B E m0mm0 n0/m0mm0 n0/mmm0

28b S t u B F mm0m0 n0/m0m0m n0/mm0m
29a s T u B E m2m10 �nn2m10 �nn2m10

29b s T u B F 2mm10 �nnm210 �nnm210

30a s t U B E mm0m n0/mm0m n0/m0m0m
30b s t U B F m0mm n0/mmm0 n0/m0mm0

31 S T U B 12/m110 mmm10 �nnm10 n/mmm10 n/mmm10 m�33m10



Rama Mohana Rao & Hemagiri Rao (1992) determined the

possible forms of the matrix describing piezomagnetism and of

the vector describing pyromagnetism in a different way for the

icosahedral, pentagonal and some decagonal point groups.

Notice that in their Tables 4–6 the Hermann–Mauguin symbol

should be �55m or �552/m instead of �552m; �55m0 or �5520/m0 instead of
�5520m0; �550m0 or �5502/m0 instead of �5502m0; �550m or �55020/m instead of
�55020m.

The magnetoelectric effect describes the electric polariza-

tion produced in matter by a magnetic field applied to it, and

the magnetization produced by an electric field: Pi = �ijHj, Mi =

�jiEj. Thermodynamics tells us that the two effects are

described by transposed matrices. P and E change sign under �11
and are invariant under 10; M and H are invariant under �11 and

change sign under 10. It follows that � changes sign under �11
and 10 but is invariant under �110. The rank of the tensor � is 2,

i.e. symmetry rotations of any order n > 2 have the same

effect. It follows that the forms of the tensor for the trigonal

groups are valid also for the corresponding pentagonal groups,

the forms for the hexagonal groups also for the corresponding

octagonal, decagonal and dodecagonal groups, the forms for

the groups in the Laue class containing 23 also for the

corresponding icosahedral groups. The forms for the trigonal,

hexagonal and cubic groups can be found e.g. in Borovik-

Romanov & Grimmer (2003); the corresponding results for

the point groups of quasicrystals are given in Table 3.

Rama Mohana Rao & Hemagiri Rao (1992) determined the

possible forms of the magnetoelectric tensor for the icosahe-

dral, pentagonal and some decagonal point groups in a

different way. Notice that a minus sign is missing in their result

for 5m.

5. Heesch–Shubnikov point-group symmetries; general
results on the form of property tensors

A property tensor may have parityþ or � and be invariant (i)

or change sign (c) under time reversal. In the previous

sections, examples have been given for all four possible

combinations: Hall effect þi, pyro- and piezomagnetism þc,

pyro- and piezoelectricity �i, magnetoelectric effect �c.

For icosahedral symmetries, a property tensor of given rank

and internal symmetry has either the same form as for 235 or it

vanishes. We refer to this standard form T[235] as A. A

property tensor of type þi, þc, �i or �c has the form A if

column 10 of Table 4 contains an A in the row containing the

icosahedral group under consideration, otherwise the tensor

will vanish.

For spherical symmetries, a property tensor of given rank

and internal symmetry has either the same form as for 21 or it

vanishes. We refer to this standard form T[21] as A. A

property tensor of type þi, þc, �i or �c has the form A if

column 11 of Table 4 contains an A in the row containing the

icosahedral group under consideration, otherwise the tensor

will vanish.

For the n-gonal groups with n � 3, we choose the axis c

along the principal symmetry direction, a and b in the plane

normal to c at an angle of ½ðn� 1Þ=n� � 180� if n is odd,

½ðn� 2Þ=n� � 180� if n is even. Adopting the usual conventions

on the symmetry directions corresponding to the entries in the

Hermann–Mauguin symbol: first entry along c, second along a,

third along a � b, it follows that a � b makes an angle of

180�/n with a if n is even, 90�/n if n is odd. (Notice that only the

first two symmetry directions appear in the Hermann–

Mauguin symbol if n is odd.)

For n-gonal symmetry with n odd, a property tensor of given

rank and internal symmetry has either the form A = T[n], B =

T[n2], C = A 	 B (which means A = B � C), or it vanishes. A

property tensor of type þi, þc, �i or �c has form A, B or C,

respectively, if column 6 of Table 4 contains that letter in the

row containing the group under consideration, otherwise the

tensor will vanish. The same is true for cylindrical symmetry, in

which case n =1.

For n-gonal symmetry with n = 2k even, a property tensor of

given rank and internal symmetry has either the form A =

T[n], B = T[n22], C = A 	 B, D = T[k] 	 A, E = T[k22] 	 B,

F = D 	 E = {T[k] 	 T[k22]} 	 C or it vanishes. A property

tensor of type þi, þc, �i or �c has one of the forms A to F if

column 7 (for k odd) or column 8 (for k even) of Table 4

contains that letter in the row containing the group under

consideration, otherwise the tensor will vanish.
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Table 5
Monochrome point groups and the corresponding forms of non-magnetic property tensors with parity + or �.

1 2 3 4 5 6 7, 8 9 10 11

Group

Form for
tensor of
parity

Triclinic,
monoclinic

Monoclinic
|| c,

n-gonal,
n odd, n � 3;
cylindrical,

n-gonal,
n even,

type + � || b orthorhombic n =1 n � 4 Cubic Icosahedral Spherical

1 A A 1 112 n n 23 235 21
2 s A D 11m �nn
5 S A �11 112/m �nn n/m m�33 m�33�55 m1

12 B B 121 222 n2 n22 432
13 s B C 1m1 mm2 nm nmm �443m
16a s B E m2m �nn2m
16b s B F 2mm �nnm2
22 S B 12/m1 mmm �nnm n/mmm m�33m



A letter S in the column ‘group type’ of Table 4 states that

the groups in the corresponding row contain space inversion �11,

a T that they contain time reversal 10, a U that they contain

space–time inversion �110. The lower case letters s, t and u state

that the groups contain the corresponding inversions only

combined with non-trivial rotations.

Table 4 extends Table 2 of Grimmer (1991) (see also

Grimmer, 2006) not only to quasicrystalline point groups but

also to all groups considered in Table 10.1.4.2 of Hahn &

Klapper (2002).

6. Discussion and conclusions

Using a theorem due to Carl Hermann, we have shown how

the restrictions on the form of property tensors of rank <5 that

follow from the Neumann principle for the point groups

describing quasicrystals can be deduced from the restrictions

for the point groups describing crystals. We showed this

explicitly for the icosahedral and n-gonal point groups, where

n = 5, 8, 10 or 12; obviously the arguments given apply also for

any n > 6. It follows that in Tables 2 and 3 one may replace in

the point group symbols 5 by n and add ‘n odd, n� 5’, and one

may replace ‘n = 8, 10 or 12’ by ‘n even, n � 8’. For octagonal

and dodecagonal point groups, the restrictions on the form of

property tensors can be deduced from those for the point

groups describing crystals even for tensors of rank <8 and <12,

respectively, as exemplified by our discussion of the third-

order elastic stiffnesses.

The results derived in a number of papers for various

physical properties of quasicrystals with certain point-group

symmetries have been generalized to all quasicrystal point

groups. It has been shown that the non-standard classification

of quasicrystal point groups with a principal axis into

pentagonal, decagonal, octagonal and dodecagonal ones used

in those papers obscures general features of their results.

Table 4, which is valid for property tensors of arbitrary rank,

simplifies considerably for ‘non-magnetic’ properties, i.e.

properties that are invariant under time reversal. In this case,

possible magnetic order can be neglected in determining the

point group, which, for simplicity, is taken as monochrome, not

grey. The result is given as Table 5.

We showed that it follows from the theorem of Hermann

(1934) that D, E and F vanish for n-gonal point groups if the

rank of the property tensor is less than n/2. For cylindrical

point groups, we conclude that this is true for property tensors

of arbitrary rank. Notice that this is automatically taken into

account by treating1 as an odd number.

It is interesting to compare our results with those of Janssen

(2003). He considers the piezoelectric and elastic properties of

quasicrystals making use of tensors in superspace. As exam-

ples, he determines the piezoelectric tensor for an octagonal

quasicrystal with point group 8mm and the elastic tensor for

an icosahedral quasicrystal with point group 235. Comparing

his results with ours suggests that applying Neumann’s prin-

ciple in our physical subspace of his superspace yields what

Janssen calls the phonon part of the tensor. This supposition is

fully confirmed by the results of Hu et al. (2000).
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